--- title: "Humidity Measures" author: "Jun Cai " date: "`r Sys.Date()`" output: bookdown::html_document2 bibliography: bibliography.bib link-citations: yes vignette: > %\VignetteIndexEntry{Humidity Measures} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ## Saturation Vapor Pressure $e_s$ {-} [Saturation vapor pressure](http://glossary.ametsoc.org/wiki/Saturation_vapor_pressure) $e_s$ is calculated from a given temperature $T$ (in $K$) by using the [Clausius-Clapeyron relation](http://en.wikipedia.org/wiki/Clausius%E2%80%93Clapeyron_relation). \begin{equation} e_s(T) = e_s(T_0)\times \exp \left(\frac{L}{R_w}\left(\frac{1}{T_0} - \frac{1}{T}\right)\right) (\#eq:1) \end{equation} where $e_s(T_0) = 6.11 hPa$ is the saturation vapor pressure at a reference temperature $T_0 = 273.15 K$, $L = 2.5 \times 10^6 J/kg$ is the [latent heat](http://en.wikipedia.org/wiki/Latent_heat) of evaporation for water, and $R_w = \frac{1000R}{M_w} = 461.52 J/(kg K)$ is the [specific gas constant](http://en.wikipedia.org/wiki/Gas_constant#Specific_gas_constant) for water vapor (where $R = 8.3144621 J / (mol K)$ is the molar [gas constant](http://en.wikipedia.org/wiki/Gas_constant) and $M_w = 18.01528 g/mol$ is the [molar mass](http://en.wikipedia.org/wiki/Molar_mass) of water vapor). More details refer to @Shaman-Kohn:2009. An alternative way to calculate saturation vapor pressure $e_s$ is per the equation proposed by @Murray:1967. \begin{equation} e_s = 6.1078\exp{\left[\frac{a(T - 273.16)}{T - b}\right]} \end{equation} where $\begin{cases} a = 21.8745584 \\ b = 7.66 \end{cases}$ over ice; $\begin{cases} a = 17.2693882 \\ b = 35.86 \end{cases}$ over water. The resulting $e_s$ is in hectopascal ($hPa$) or millibar ($mb$). ## Vapor Pressure $e$ {-} When given [dew point](https://en.wikipedia.org/wiki/Dew_point) $T_d$ (in $K$), the actual vapor pressure $e$ can be computed by plugging $T_d$ in place of $T$ into equation \@ref(eq:1). The resulting $e$ is in millibar ($mb$). ## Relative Humidity $\psi$ {-} [Relative humidity](http://en.wikipedia.org/wiki/Humidity#Relative_humidity) $\psi$ is defined as the ratio of the partial water vapor pressure $e$ to the saturation vapor pressure $e_s$ at a given temperature $T$, which is usually expressed in $\%$ as follows \begin{equation} \psi = \frac{e}{e_s}\times 100 (\#eq:2) \end{equation} Therefore, when given the saturation vapor pressure $e_s$ and relative humidity $\psi$, the partial water vapor pressure $e$ can also be easily calculated per equation \@ref(eq:2). $$ e = \psi e_s $$ The resulting $e$ is in $Pa$. ## Absolute Humidity $\rho_w$ {-} [Absolute humidity](http://en.wikipedia.org/wiki/Humidity#Absolute_humidity) $\rho_w$ is the total amount of water vapor $m_w$ present in a given volume of air $V$. The definition of absolute humidity can be described as follows $$ \rho_w = \frac{m_w}{V} $$ Water vapor can be regarded as ideal gas in the normal atmospheric temperature and atmospheric pressure. Its equation of state is \begin{equation} e = \rho_w R_w T (\#eq:3) \end{equation} Absolute humidity $\rho_w$ is derived by solving equation \@ref(eq:3). $$ \rho_w = \frac{e}{R_w T} $$ The resulting $\rho_w$ is in $kg/m^3$. ## Mixing Ratio $\omega$ {-} [Mixing ratio](http://www.conservationphysics.org/teabag/ah_mr.php) $\omega$ is the ratio of water vapor mass $m_w$ to dry air mass $m_d$, expressed in equation as follows $$ \omega = \frac{m_w}{m_d} $$ The resulting $\omega$ is in $kg/kg$. ## Specific Humidity $q$ {-} [Specific humidity](http://en.wikipedia.org/wiki/Humidity#Specific_humidity) $q$ is the ratio of water vapor mass $m_w$ to the total (i.e., including dry) air mass $m$ (namely, $m = m_w + m_d$). The definition is described as $$ q = \frac{m_w}{m} = \frac{m_w}{m_w + m_d} = \frac{\omega}{\omega + 1} $$ Specific humidity can also be expressed in following way. $$ \begin{equation} q = \frac{\frac{M_w}{M_d}e}{p - (1 - \frac{M_w}{M_d})e} (\#eq:4) \end{equation} $$ where $M_d = 28.9634 g/mol$ is the molar mass of dry air; $p$ represents [atmospheric pressure](http://en.wikipedia.org/wiki/Atmospheric_pressure) and the standard atmospheric pressure is equal to $101,325 Pa$. The details of formula derivation refer to [Wikipedia](http://zh.wikipedia.org/wiki/%E6%B9%BF%E5%BA%A6#.E6.AF.94.E6.BA.BC). Substitute $\frac{M_w}{M_d} \approx 0.622$ into equation \@ref(eq:4) and simplify the formula. $$ q \approx \frac{0.622e}{p - 0.378e} (\#eq:5) $$ The resulting $q$ is in $kg/kg$. Hence, by solving equation \@ref(eq:5) we can obtain the equation for calculating the partial water vapor pressure $e$ given the specific humidity $q$ and atmospheric pressure $p$. $$ e \approx \frac{qp}{0.622 + 0.378q} (\#eq:6) $$ Substituting equations \@ref(eq:1) and \@ref(eq:6) into equation \@ref(eq:2), we can get the equation for converting specific humidity $q$ into relative humidity $\psi$ at a given temperature $T$ and under atmospheric pressure $p$. ## References